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C.E.A.-Saclay, F-91191 Gif-sur-Yvette, France
bKorea Institute for Advanced Study,

Seoul 103-722, Korea

E-mail: jean-emile.bourgine@cea.fr, hosomiti@kias.re.kr

Abstract: We study the new boundary condition of the O(n) model proposed by Jacob-

sen and Saleur using the matrix model. The spectrum of boundary operators and their

conformal weights are obtained by solving the loop equations. Using the diagrammatic

expansion of the matrix model as well as the loop equations, we make an explicit corre-

spondence between the new boundary condition of the O(n) model and the “alternating

height” boundary conditions in RSOS model.

Keywords: Matrix Models, Conformal Field Models in String Theory.

c© SISSA 2009

mailto:jean-emile.bourgine@cea.fr
mailto:hosomiti@kias.re.kr
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
9
)
0
0
9

Contents

1. Introduction 2

2. Boundary operators in the O(n) model 3

2.1 Definition of the model 3

2.2 The O(n) matrix model 5

2.3 Loop equations 6

2.3.1 Loop equations for D0 and D
‖
1 7

2.3.2 Loop equations for D⊥
L and D

‖
L 8

2.4 Solution in the continuum limit 9

2.4.1 The disc amplitude W 9

2.4.2 The disc amplitudes D⊥
0 and D

‖
1 10

2.4.3 The disc amplitudes D⊥
L and D

‖
L 11

3. Boundary operators in RSOS model 12

3.1 Definition of the model 12

3.2 The RSOS matrix model 13

3.3 Loop equations 15

3.3.1 Recursion relation for Da,〈bc〉 15

3.3.2 Bilinear functional equation for Da,〈ab〉 15

3.4 Solution in the continuum limit 17

4. The map between the two models 18

4.1 Relations between Feynman graphs 19

4.1.1 Resolvents 19

4.1.2 Disc correlators D⊥
0 and Da,〈ab〉 20

4.1.3 Disc correlators D
‖
1 and Db,〈ba〉 21

4.1.4 Disc correlators of L-leg operators 22

5. Concluding remarks 22

A. Gravitational dressing, Liouville theory and KPZ 23

B. Solving the loop equation 25

– 1 –



J
H
E
P
0
1
(
2
0
0
9
)
0
0
9

1. Introduction

Boundary conformal field theories play an important role in many fields of theoretical

physics, such as statistical mechanics, condensed matter or string theory. In order to study

the properties of boundary conditions and boundary operators, it is useful to have at our

disposal a microscopic description of the conformal field theories (CFT). The O(n) model

and solid-on-solid (SOS) models are the familiar examples which provide us with such a

description of, in general irrational, CFTs with central charge c < 1. In the O(n) model

each lattice site is assigned an O(n) spin, whereas in SOS models one associates an integer-

valued height to each lattice point. In both theories, neighbouring sites are then coupled via

suitable interactions. The heights are bounded from both sides in the so called restricted

SOS (or RSOS) models; these models are known to describe rational CFTs with c < 1.

Both the O(n) and SOS models can be reformulated as loop gas models [1]. In this

formulation, the O(n) model makes sense for arbitrary real n and exhibit critical behaviour

for |n| ≤ 2. The phase structure of these models is well understood. Interestingly, they

are known to describe two CFTs of different central charges connected by a renormal-

ization group flow. The loops behave differently in the UV (or dilute) phase and the IR

(dense) phase.

Some properties of the O(n) and SOS models can be studied by putting them on

a fluctuating lattice, i.e., coupling them to the two-dimensional gravity. The partition

function of such theories is given by summing up the partition functions of the model

on all the different lattices weighted by their area. Actually, the O(n) and SOS models

on random — or dynamical — lattice are known to be described by the Feynman graph

expansion of certain matrix models [1 – 7]. In this context, the continuum limit is achieved

by tuning the potential couplings while sending the size of the matrices to infinity. In this

limit one recovers the dynamics of the irrational CFT with c < 1 coupled to the Liouville

gravity and reparametrization ghosts.

The O(n) and SOS matrix models are also useful in studying the conformally invariant

boundary conditions from the microscopic viewpoint. In this paper, we will be particularly

interested in the boundary conditions of the O(n) model recently proposed by Jacobsen and

Saleur [8]. Instead of allowing the loops to touch the boundary freely, they weighted the

loops touching the boundary differently from those which do not. They also considered the

“L-leg” boundary operators on which L open lines end. The properties of such boundary

conditions and operators were studied on a fixed annular lattice with L non-contractible

loops introduced. They obtained a continuous spectrum of boundary operators and deter-

mined their conformal weights. The new boundary conditions were also put on a dynamical

lattice by Kostov [9], where the correlation functions and the conformal weights of the L-

leg operators were computed. The L-leg operators were also considered in some earlier

works [10 – 12].

Another interesting fact is that the O(n) model becomes equivalent to the RSOS model

for some special values of n. In [8] it was proposed that the new boundary conditions of

Jacobsen and Saleur correspond to the boundary conditions in RSOS model which force

the boundary height to alternate between two values [13].
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In this paper we study the property of boundary conditions and boundary operators of

these models using the loop equations along the line of [9], but with more help of the matrix

model formulation which is much simpler to handle than the combinatorics employed in

the earlier work. We will be focusing on the dense phase, leaving the analysis of the dilute

phase as a future work.

The organization of this paper is as follows. In section 2 we introduce the new boundary

conditions and boundary L-leg operators in the O(n) matrix model following [9], and

rederive the correlation functions and conformal weights of the L-leg operators from the

loop equations. Then in section 3 we propose a description of the boundary conditions

of alternating heights in RSOS matrix models. Using this we derive the spectrum of

boundary operators as well as their conformal weights and correlators, again by solving the

loop equations. Finally, in section 4 we show the equivalence of the O(n) and RSOS models

on discs by establishing a map between their Feynman graphs. We use this to derive some

relations between the disc correlators, which are then shown to map the loop equations of

one theory to the other. The last section 5 is devoted to some conluding remarks.

In appendix A we review some basic facts on the Liouville theory approach to conformal

field theories coupled to two-dimensional gravity, and summarize the formulae for the

conformal weight and gravitational dimension of the operators. Some detail of solving the

loop equation and reading off the gravitational dimension are given in appendix B.

2. Boundary operators in the O(n) model

2.1 Definition of the model

Let us consider a triangular lattice Γ with an O(n) spin component associated to each site

r, normalized so that tr Sa(r)Sb(r
′) = δabδrr′ . The partition function of the O(n) model is

defined by [14, 15]

ZΓ(T ) = tr
∏

〈rr′〉

(

1 +
1

T

∑

a

Sa(r)Sa(r
′)

)

, (2.1)

where T is called the temperature and the product runs over all links 〈rr′〉 of Γ. Expanding

the product into a sum of monomials, the partition function can be written as a sum over

all configurations of self avoiding, mutually avoiding loops on Γ,

ZΓ(T ) =
∑

loops

T−(length)n#(loops). (2.2)

Each loop is counted with a factor n, and the temperature T controls the average total

length of the loops. When formulated in this way, the model makes sense for arbitrary

real n. This model is known to exhibit a critical behaviour for |n| ≤ 2. Hereafter we

parameterize n in terms of g or θ as follows,

n = −2 cos (πg) = 2 cos (πθ). (2.3)

As a function of n, g is multi-valued. Different branches are known to correspond to

different phases of the model [1].

– 3 –
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The temperature controls the phase of the model. It is in the dilute phase at some

critical temperature T = T ∗, and below T ∗ it is in the dense phase. For generic n, the two

phases are described by two irrational conformal field theories with central charges

cdense = 1 − 6θ2

1 − θ
, cdilute = 1 − 6θ2

1 + θ
. (2.4)

We will be focusing on the physics in the dense phase, which has the same behaviour as

the fully packed loop model corresponding to T = 0. Hereafter we assume θ ∈ [0, 1] and

θ = 1 − g.

Turning on the gravity corresponds to taking the sum over all the triangulated surfaces

with a suitable weight,

Zdyn(κ, T ) =
∑

Γ

κ−A(Γ)ZΓ(T ). (2.5)

The parameter κ controls the average area A(Γ) (the number of triangles) and is regarded

as the bare cosmological constant. The continuum limit is obtained from the vicinity of the

critical line κ = κ∗(T ) where the average area of the surface diverges. One can also allow

the surfaces to have boundaries. For example, a disc partition function can be defined as

the sum over the surfaces of disc topology,

Zdyn(κ, x, T ) =
∑

Γ: disc

1

L(Γ)
κ−A(Γ)x−L(Γ)ZΓ(T ), (2.6)

where x is the boundary cosmological constant controlling the average boundary length

(the number of edges along the boundary). In this case, we have to send x also to a

critical value as κ → κ∗(T ) so that the average boundary length diverges in the limit. The

continuum limit is therefore parametrized by the renormalized couplings µ ∼ κ∗ − κ and

ξ ∼ x−x∗. Note that, when the disc has more than one boundary, a boundary cosmological

constant may be introduced for each.

Until recently, the only boundary condition studied in the O(n) model was the Neu-

mann boundary condition in which the spins at the boundary fluctuate freely. Based on

earlier work [16, 17], Jacobsen and Saleur [8] proposed a new kind of boundary conditions

in which the boundary spins are forced to take the first k of the n values. We call this the

k-th JS boundary condition. Neumann and Dirichlet boundary conditions correspond to

the special cases with k = n and k = 1, respectively. In the loop gas picture, the k-th JS

boundary condition amounts to giving a weight k, instead to the usual n, to the loops that

touch the boundary at lease once. Defined in this way, the JS boundaries make sense for

non-integer k.

Following [9], we consider the model on the disc with one Neumann and one JS bound-

aries connected by the boundary changing operators,

S
‖
L =

∑

1≤a1<···<aL≤k

Sa1
· · ·SaL

, S
⊥
L =

∑

k<a1<···<aL≤n

Sa1
· · ·SaL

. (2.7)

In the loop gas picture, they have L legs of open lines attached. They are called the blobbed

and unblobbed L-leg operators [8]. They were named after the underlying Temperley-Lieb

– 4 –
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algebra though we will not need its detailed property in this paper. One of the important

characteristics of these operators is that the lines from blobbed operators can touch the

JS boundary whereas the line from unblobbed operators cannot. We will give the matrix

model equivalent of these operators in the next subsection.

2.2 The O(n) matrix model

The O(n) matrix model is an integral over N × N hermitian matrices X and Ya, with a

running from 1 to n. The partition function is given by [6]

Z =

∫

dX

n
∏

a=1

dYa exp

[

βtr

(

− 1

2
X2 +

1

3
X3 − T

2

n
∑

a=1

Y 2
a +

n
∑

a=1

XY 2
a

)

]

. (2.8)

The Feynman graph expansion of Z generates all the dynamical lattices of arbitrary genus

but without boundaries. The bare cosmological constant κ is given by

β = Nκ2, (2.9)

and each loop formed by the propagators of Ya is multiplied by nT−(length). Graphs of

genus h are weighted by N2−2h, so that the planar graphs dominate the partition function

in the large N limit for a fixed κ. Continuum limit is obtained by sending κ → κ∗(T ) and

N → ∞ in a correlated manner.

The physics in the continuum limit depends on the temperature. Below the critical

temperature T < T ∗, partition function is dominated by graphs with densely packed loops.

Since the vertices with three legs of X do not play any role, one could study the dense

phase using the definition (2.8) without the X3 term. Before proceeding, we make a slight

redefinitions of the matrices X and Ya so as to simplify the integrand of (2.8),

Z =

∫

dX
n
∏

a=1

dYa exp

[

−βtr

(

V (X) −
n
∑

a=1

XY 2
a

)

]

. (2.10)

The potential V (X) is then given by

V (X) =
1

2

(

X +
T

2
)2 − 1

3

(

X +
T

2

)3
. (2.11)

As was mentioned above, generic quadratic potential V (X) could capture the physics in

the dense phase.

The disc partition function with Neumann boundary condition is given in the

large N limit by

Φ(x) = − 1

β
〈tr log(x − X)〉. (2.12)

Because of the prefactor 1/β, the leading contribution is independent of N and the higher

genus contributions are subleading at large N . What will become more important later is

its derivative, the resolvent

W (x) = − ∂

∂x
Φ(x) =

1

β

〈

tr
1

x − X

〉

. (2.13)
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The derivative introduces one marked point along the boundary. One is supposed to take

x → x∗ = 0 in the continuum limit [18]. The disc partition function with the k-th JS

boundary condition and one marked point is given by

W̃ (y) =
1

β

〈

tr
1

y −∑k
a=1 Y 2

a

〉

, (2.14)

where we suppress the k-dependence of W̃ for notational simplicity. To study the boundary

changing operators, we also introduce disc two-point functions with one Neumann and one

JS boundary conditions,

D0(x, y) =
1

β

〈

tr

(

1

x − X

1

y −∑k
a=1 Y 2

a

)〉

. (2.15)

We also consider the correlation functions of the L-leg operators,

D
‖
L(x, y) =

1

β

〈

tr

(

1

x − X
Y
‖
L

1

y −∑k
a=1 Y 2

a

Y
‖
L

)〉

,

D⊥
L (x, y) =

1

β

〈

tr

(

1

x − X
Y
⊥
L

1

y −∑k
a=1 Y 2

a

Y
⊥
L

)〉

,

(2.16)

where the operators Y
‖
L and Y

⊥
L are defined analogously to (2.7),

Y
‖
L =

∑

{a1,··· ,aL}⊂{1,··· ,k}

Ya1
· · ·YaL

, Y
⊥
L =

∑

{a1,··· ,aL}⊂{k+1,··· ,n}

Ya1
· · · YaL

. (2.17)

The sums are taken over all different sets of L letters (so Y
‖
L consists of k!/L! terms). These

operators are the analogues in matrix model of the blobbed and unblobbed L-leg operators.

In the following, we study the loop equations for the above correlators that are asso-

ciated to Ya-derivatives. We will see that the Ya-derivative adds or removes one open line

between boundary operators, so that the loop equations relate the correlators D
⊥,‖
L with

D
⊥,‖
L+1. Among those correlators, D

‖
1 and D0 will be of particular importance because they

can be determined from a closed system of shift equations.

2.3 Loop equations

We start from the loop equation which follows from the translation invariance of the mea-

sure dYa. For any matrix F made of X and Ya, the following equality holds:

1

β

∑

ij

〈

∂

∂Yaij
Fij

〉

= −
〈

tr(FX + XF )Ya

〉

. (2.18)

If we introduce G = −(XF + FX), then F is formally expressed in terms of G as

F =

∫ ∞

0
dℓeℓXGeℓX , (2.19)

Using them, the loop equation can be rewritten as

∑

ij

1

β

〈

∂

∂Yaij

∫ ∞

0
dℓ(eℓXGeℓX)ij

〉

= 〈tr GYa〉. (2.20)

In the following we will apply this central identity to different G and derive some relations

among our correlators D
‖
L and D⊥

L .

– 6 –
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2.3.1 Loop equations for D0 and D
‖
1

For later convenience, we begin by introducing the notation

H(y) =
1

y −∑k
a=1 Y 2

a

. (2.21)

Let us first apply (2.20) to G = eℓ′XHYa with a ≤ k. Using the well known large N

factorization 〈trA trB〉 ≃ 〈trA〉〈trB〉 and dropping the terms containing odd powers of Ya

in a correlator, we find

β〈tr eℓ′XHY 2
a 〉 =

∫

dℓ〈tr e(ℓ+ℓ′)XH〉
(

〈tr eℓXYaHYa〉 + 〈tr eℓX〉
)

. (2.22)

Another relation can be obtained by applying (2.20) to G = eℓ′XYaH:

β〈tr eℓ′XYaHYa〉 =

∫

dℓ
(

〈tr e(ℓ+ℓ′)XYaHYa〉 + 〈tr e(ℓ+ℓ′)X〉
)

〈tr eℓXH〉. (2.23)

Now we make a Laplace transform with respect to ℓ and ℓ′, using the relations

∫ ∞

0
dℓe−ℓxtr(eℓXA) = tr

(

1

x − X
A

)

,

∫ ∞

0
dℓdℓ′e−xℓ′tr(e(ℓ+ℓ′)XA)tr(eℓXB) = tr

(

1

x − X
A

)

∗ tr

(

1

x − X
B

)

.

(2.24)

Here we denoted by ∗ the Laplace transform of the convolution

F (x) ∗ G(x) =

∮

dx′

2πi

F (x′) − F (x)

x − x′
G(−x′) , (2.25)

and the contour of x′ integration here encircles around the cut where F (x) has discontinuity.

The loop equations (2.22) and (2.23) can then be rewritten into the form

〈

tr

(

HY 2
a

1

x − X

)〉

= D0(x, y) ∗
(〈

tr

(

YaHYa
1

x − X

)〉

+ βW (x)

)

,

〈

tr

(

YaHYa
1

x − X

)〉

=

(〈

tr

(

YaHYa
1

x − X

)〉

+ βW (x)

)

∗ D0(x, y) .

(2.26)

It only remains to sum over a from 1 to k. Using the definitions (2.15) and (2.16) for D0

and D
‖
1 as well as the equality

1

β

k
∑

a=1

〈

tr

(

HY 2
a

1

x − X

)〉

= yD0(x, y) − W (x), (2.27)

we obtain

yD0(x, y) − W (x) = D0(x, y) ∗
(

D
‖
1(x, y) + kW (x)

)

,

D
‖
1(x, y) =

(

kW (x) + D
‖
1(x, y)

)

∗ D0(x, y).
(2.28)

– 7 –
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To obtain more useful equations for D0 and D
‖
1, we subtract their non-critical parts

and define

d0(x, y) = D0(x, y) − 1,

kd1(x, y) = D
‖
1(x, y) + kW (x) − y.

(2.29)

It is natural to assume that d0 and d1 have the same cut in the x-plane as that of W (x),

since the cut is determined by the eigenvalue distribution of X and therefore does not

depend on the correlators considered. The loop equation (2.28) can then be rewritten in

terms of the discontinuity along the cut,

d0(−x, y)Disc d1(x, y) + Disc W (x) = 0,

d1(−x, y)Disc d0(x, y) +
1

k
Disc W (x) = 0,

(2.30)

where Discf(x) ≡ f(x+i0)−f(x−i0). Using this one can show that the following quantity

has no discontinuities and no poles in the complex x-plane,

P10(x, y) = d1(x, y)d0(−x, y) + W (x) +
1

k
W (−x) − y

k
. (2.31)

Moreover, its behaviour at large x is found from (2.29),

d0 = −1 + O
(

1

x

)

, d1 = −y

k
+ O

(

1

x

)

, P10 = O
(

1

x

)

. (2.32)

Therefore P10 should be identically zero.

d1(x, y)d0(−x, y) + W (x) +
1

k
W (−x) − y

k
= 0,

d0(x, y)d1(−x, y) + W (−x) +
1

k
W (x) − y

k
= 0.

(2.33)

As compare to our loop equation (2.30), the equation obtained in [9] (equations 3.13

and 3.14) has one additional term coresponding to the JS boundary touching itself to break

the disc into two pieces. Including such a term may be reasonable from the standpoint

of the combinatorics because the JS boundary has fractal dimension 1/g. In the matrix

model description, this boundary has classical dimension one and the term is missing. This

discrepency comes from two different possibilities for defining the boundary Liouville poten-

tial. Because of the symmetry ∆r,s(g) = ∆s,r(1/g) between the dressed scaling dimensions,

both point of view give the same scaling dimension for the boundary operators.

2.3.2 Loop equations for D⊥
L and D

‖
L

Let us next take G = eℓ′XYaH with a > k and apply (2.20). Following the similar steps as

in the previous subsubsection, we get

D⊥
1 (x, y) = (n − k)W (x) ∗ D0(x, y). (2.34)

This is actually a special case of more general recursion relations between D⊥
L+1 and D⊥

L ,

and similarly between D
‖
L+1 and D

‖
L. To derive them, let us denote by {ai}, {bi} two

– 8 –
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arbitrary sets of order L + 1. They are both chosen to be subsets of {1, · · · , k} or {k +

1, · · · , n} depending on whether we are interested in D
‖
L ot D⊥

L . Then we apply the loop

equation (2.20) to

G = YaL
· · ·Ya1

1

y −
∑k

c=1 Y 2
c

Yb1 · · ·YbL+1
eℓ′X , (2.35)

where the derivative is with respect to YaL+1
, and sum over the sets {ai} and {bi}. The

final result is

D
‖
L+1(x, y) = (k − L)W (x) ∗ D

‖
L(x, y),

D⊥
L+1(x, y) = (n − k − L)W (x) ∗ D⊥

L (x, y).
(2.36)

These relations agree with the result of [9]. In terms of discontinuity along the cut, the

loop equations become

Disc D
‖
L+1(x, y) = (k − L)D

‖
L(−x, y)Disc W (x),

Disc D⊥
L+1(x, y) = (n − k − L)D⊥

L (−x, y)Disc W (x).
(2.37)

The second equation can be extended to the case L = 0 if one defines

D⊥
0 (x, y) = D0(x, y), D

‖
0(x, y) =

D0

1 − D0
. (2.38)

It was pointed out in [9] that these relations follow naturally if the Neumann and JS

boundaries are allowed to touch in D
‖
0 but not allowed in D⊥

0 .

2.4 Solution in the continuum limit

2.4.1 The disc amplitude W

To study the continuum limit, we introduce a small parameter ǫ and set the unit lattice

length to ǫ. We define the renormalized bulk and boundary cosmological constants (µ, ξ, ζ)

by [1]

ǫ2µ = κ − κ∗, ǫ1/gξ = x − x∗, ǫζ = y − y∗. (2.39)

They blow up the neighbourhood of the critical point (κ∗, x∗, y∗) in the scaling limit ǫ → 0.

Note that the JS boundaries have classical dimension 1 whereas the Neumann boundary

has fractal dimension 1/g. The renormalized resolvent w(ξ) is defined by

W (x) − 2V ′(x) − nV ′(−x)

4 − n2
= ǫw(ξ). (2.40)

In [1] the resolvent was obtained in the following parametric form,

ξ = M cosh τ, w(ξ) = −Mg

2g
cosh gτ. (2.41)

Here M is related to the cosmological constant µ and the string susceptibility u via

M2g = 2gµ, u =
∂2Zsphere

∂µ2
= M2θ. (2.42)

As a function of ξ, the resolvent has a cut along the interval ]−∞,−M ] where the eigenvalues

of the matrix X are distributed.
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2.4.2 The disc amplitudes D⊥
0 and D

‖
1

Here we wish to solve (2.33) in the continuum limit. To begin with, we need to find the

critical value y∗ of the k-th JS boundary cosmological constant. Since it should not depend

on x and κ, one can determine it by requiring that d0 and d1 vanish at the critical point

(x, y, κ) = (0, y∗, κ∗),

y∗ = (k + 1)W (0). (2.43)

With a slight abuse of notations, we define the renormalized two-point functions by

di(x, y) = ǫαi/gdi(ξ, ζ), (2.44)

where the scaling exponents α0, α1 will be determined shortly. To the leading order in

small ǫ, the loop equations (2.33) become

d1(ξ, ζ)d0(−ξ, ζ) + w(ξ) +
1

k
w(−ξ) − ζ

k
= 0,

d0(ξ, ζ)d1(−ξ, ζ) + w(−ξ) +
1

k
w(ξ) − ζ

k
= 0.

(2.45)

We dropped several terms in (2.33) such as polynomial terms in W (x) because they are

subdominant for small ǫ. By noticing di ∼ ξαi for ζ = µ = 0 and using the loop equations,

one can determine the scaling exponents [9],

α0 = rθ, α1 = 1 − θ − rθ, (2.46)

where r is related to k by

k(r) =
sin (r + 1)πθ

sin rπθ
. (2.47)

Hereafter we use r as the label of JS boundaries; it has a clear physical meaning as we will

see later. We also express ζ in terms of a new parameter σ as

ζ(σ) =
Mg

2g

sin πθ

sinπrθ
cosh gσ. (2.48)

Using (2.41), (2.47) and (2.48) the loop equations can be rewritten as

d1

(

τ ∓ iπ

2
, σ

)

d0

(

τ ± iπ

2
, σ

)

= CMg cosh
g(τ + σ) ± α

2
cosh

g(τ − σ) ± α

2
, (2.49)

where

C =
sin πθ

g sin π(r + 1)θ
, α =

iπ

2
(2rθ + θ − 1). (2.50)

We solve these shift relations in appendix B using a slight generalization of [10]. The

result is that d0, d1 are given by the Liouville boundary two-point function [19]. See ap-

pendix A for its explicit form. The scaling exponents of the correlators di ∝ ξαi are then

read from their dependence on the boundary cosmological constant, and agree precisely

with (2.46). This is enough to determine the gravitational dimensions of the boundary

changing operators in the correlators d0 and d1,

∆⊥
0 = ∆r,r, ∆

‖
1 = ∆−r,−r−1, (2.51)

– 10 –



J
H
E
P
0
1
(
2
0
0
9
)
0
0
9

where the gravitational dimension for the (r, s) operator is given by

∆r,s =
r − 1 − g(s − 1)

2g
, (2.52)

and is related to the conformal weight of the operators in CFT by KPZ relation (A.6). See

appendix A for more detail.

2.4.3 The disc amplitudes D⊥
L and D

‖
L

Using the parameters (τ, σ) in the continuum limit and the equality

w(τ + iπ) − w(τ − iπ) =
Mg

ig
sin πθ sinh gτ, (2.53)

the loop equations (2.37) can be rewritten into the form

D
‖
L+1(τ + iπ, σ) − D

‖
L+1(τ − iπ, σ) =

(k − L)Mg

ig
sin πθ sinh gτD

‖
L(τ, σ),

D⊥
L+1(τ + iπ, σ) − D⊥

L+1(τ − iπ, σ) =
(n − k − L)Mg

ig
sin πθ sinh gτD⊥

L (τ, σ).

(2.54)

These shift relations take the same form as (A.12) satisfied by the Liouville boundary two-

point function. So, in the continuum limit the correlators D
‖
L and D⊥

L are again given by

Liouville boundary two-point functions up to factors independent of τ, σ. The gravitational

dimensions of the L-legs boundary operators are given by

∆
‖
L = ∆−r,−r−L, ∆⊥

L = ∆r,r−L. (2.55)

Through KPZ relation (A.6) this determines the conformal weight of the blobbed and

unblobbed operators. The results are in complete agreement with [8] and confirm our

identification of matrix model correlators with those of the O(n) model coupled to gravity.

As was noticed in [8], there is no reason for the parameter r to be quantized in the O(n)

model. So we have a continuous spectrum of JS boundary conditions and the associated

boundary-changing operators. We conclude this section with a few remarks on some special

values of r. First, for k = n or r = 1 the JS boundary becomes the Neumann boundary.

In this case the conformal weights of the boundary operators become δ⊥L = δ1,L+1 and

δ
‖
L = δ1,L+1, in agreement with the result [20] on flat lattice and [10] on dynamical lattice.

Another interesting special case is the Dirichlet case, which corresponds to k = 1 or

r =
1 − θ

2θ
. (2.56)

In this limit, using the fact that the correlators of odd powers of Ya matrices vanish, one

can prove the relations

D⊥
0 (x, y) =

〈

tr
1

x − X

1

y − Y 2
a

〉

=
1√
y

〈

tr
1

x − X

1√
y − Ya

〉

,

D
‖
1(x, y) = yD⊥

0 (x, y) − W (x) =
√

y

〈

tr
1

x − X

1√
y − Ya

〉

− W (x).

(2.57)
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The loop equation for k = 1 then involves only one undetermined quantity,

yd0(x, y)d0(−x, y) + W (x) + W (−x) − y = 0. (2.58)

We recovered the loop equation for the correlation functions of twist operators in loop gas

model [10] up to normalization of correlators and parameters. Note that this simplification

is a special feature of k = 1 because the resolvents for the JS boundaries with k > 1 involve

k non-commuting matrices Ya.

3. Boundary operators in RSOS model

3.1 Definition of the model

In the RSOS height model [21], the local fluctuation variable (height) takes values in the

integer set {1, · · · , h − 1}. This model is also called Ah−1-model, the integer set being

identified with the nodes of the Dynkin graph for the A series. This graph is characterized

by its adjacency matrix

Gab =

{

1 if a ∼ b ,

0 otherwise.
(3.1)

The indices a, b run over the nodes of the Dynkin graph, and a ∼ b means that the nodes

a, b are linked. One can define the so called ADE-models in the same way from the Dynkin

graphs of the ADE Lie algebras [22].

The RSOS model on a fixed triangular lattice with possible curvature defects is defined

as the statistical sum over all the height configurations. Each height configuration is

weighted according to the following rule [23]. To each site of height a one assigns the local

Boltzmann weight

W◦(a) = Sa, (3.2)

and to each triangle with the heights a, b, c at the three vertices one assigns

W∆(a, b, c) =
1√
Sa

δabδbc +
1

T
√

Sa

(

δabGbc + δbcGca + δcaGab

)

. (3.3)

Here T is the temperature, and Sa are the components of the Perron-Frobenius vector

Sa =

√

2

h
sin
(πa

h

)

, (3.4)

which is the eigenvector of the adjacency matrix with the largest eigenvalue 2 cos (π/h).

The weight (3.3) in particular requires that the heights of any two adjacent sites can differ

at most by a unit. Thanks to this, the height configurations can also be described by the

contour lines (loops) along the edges of the dual lattice [15]. The average total length of

the loop is then controlled by the temperature.

The phase diagram of the RSOS model is the same as that for the O(n) model; it

is in the dilute phase at some critical temperature T ∗, and in the dense phase at lower

temperatures. Since the lattice is filled by the loops in the dense phase, one can study this

phase using the Boltzmann weight (3.3) without the first term.
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Conformal boundary conditions are realized microscopically as suitable restrictions

on the heights on the boundary. In the dense phase there are two kinds of boundary

conditions. The “fixed” boundary condition a requires the boundary to take the constant

height a. The “alternating” boundary conditions 〈ab〉 require the sites at the boundary to

take the two adjacent heights a and b alternately, like ababab . . . ab. Bauer and Saleur [13]

studied both types of boundary conditions on the flat lattice, and found that conformal

weights of the boundary changing operators 1Ba and 〈12〉B〈ab〉 are given by δ1,a and δa,1.

In the following we will show that the boundary operators of conformal weight δr,s can be

realized as sB〈r r+1〉 when r ≥ s and sB〈r+1 r〉 when r < s.

3.2 The RSOS matrix model

The RSOS matrix models [24] are the simplest examples of the ADE-matrix models.

The fluctuating variables are h − 1 hermitian matrices Xa associated to the nodes a =

1, · · · , h−1, and h−2 rectangular complex matrices Cab = C†
ba associated with the oriented

links 〈ab〉. Xa has the size Na ×Na while Cab has the size Na ×Nb. The partition function

is given by the integral

Z =

∫

∏

a

dXa

∏

〈ab〉

dCab exp
(

− βS[X,C]
)

,

S[X,C] =
∑

a

Satr

(

1

2
X2

a − 1

3
X3

a

)

+
∑

〈ab〉

tr

(

T

2
CabCba − XaCabCba

)

,

(3.5)

where 〈ab〉 runs over oriented links of the Dynkin graph.

We take the limit of large β, large Na keeping their ratio fixed,

Na

βSa
≡ κ2 = fixed. (3.6)

The constant κ plays the role of the bare cosmological constant. Perturbative expansion

of Z gives the sum over height configurations with Boltzmann weights (3.2) and (3.3), but

now on dynamical lattice. The planar graphs dominate the partition function in the large

β limit, and the higher genus terms are suppressed by powers of β−2.

One can view the system as the gas of loops on dynamical lattice which are formed by

the propagators of Cab, Cba and separating the domains of heights a and b. The temperature

T is regarded as the fugacity for the total loop length. Again, the term X3
a in S[X,C] can

be dropped when one is interested in the dense phase.

Also, the Feynman rule is such that each connected domain of height a gives rise

to a factor

(Sa)
χ, (3.7)

where χ is the Euler number of that domain. For disc graphs, this rule amounts to assigning

the factor Sa to each “outermost” domain of height a touching the boundary, and Sa/Sb

to each domain of height a surrounded by that of height b.
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Before proceeding, we make a certain linear change of matrix variables to rewrite the

partition function as

Z =

∫

∏

a

dXa

∏

〈ab〉

dCab exp

(

− β
∑

a

SatrV (Xa) + β
∑

〈ab〉

XaCabCba

)

, (3.8)

where the potential V (x) is the same as the one (2.11) for the O(n) model. As was

mentioned above, generic quadratic V can describe the physics in the dense phase.

We will consider the following correlators

Φa(x) = − 1

β

〈

tr log(x − Xa)
〉

,

Φ〈ab〉(y) = − 1

β

〈

tr log(y − CabCba)
〉

.

(3.9)

They correspond respectively to the disc partition function with the boundary conditions

a or 〈ab〉. The more important quantities in the following analysis are their derivatives,

the loop amplitudes

Wa(x) = − ∂

∂x
Φa(x) =

1

β

〈

tr
1

x − Xa

〉

,

W〈ab〉(y) = − ∂

∂y
Φ〈ab〉(y) =

1

β

〈

tr
1

y − CabCba

〉

.

(3.10)

The loop amplitudes Wa(x) are the Laplace images of the loop amplitudes with fixed

boundary length,

W̃a(ℓ) =
1

β

〈

tr eℓXa
〉

. (3.11)

To study the spectrum of boundary operators, we also consider the disc two-point functions

with a and 〈bc〉 boundary segments,

Da,〈bc〉(x, y) =
1

β

〈

tr

(

1

x − Xa
SL

ab

1

y − CbcCcb
SL

ba

)〉

. (3.12)

Here

SL
ab ≡ Cad1

Cd1d2
· · ·CdL−1b (3.13)

is the product of C’s along the shortest path from a to b, so that each height di appears

only once. We also assume that the path does not contain the node c. There are L open

contour lines stretching between the two boundary changing operators SL
ab. Their Laplace

transform,

D̃a,〈bc〉(ℓ, y) =
1

β

〈

tr

(

eℓXaSL
ab

1

y − CbcCcb
SL

ba

)〉

, (3.14)

will also appear in the derivation of the loop equation.
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3.3 Loop equations

Here we derive some loop equations for disc correlators by using the same technique that

was used in the O(n) model. Let us start from

1

β

〈

∂Fij

∂Cab ij

〉

= −
〈

tr F (CbaXa + XbCba)
〉

, (3.15)

where F is a Na × Nb matrix made of X and C matrices. By inserting

F =

∫ ∞

0
dℓeℓXaGeℓXb , (3.16)

we obtain the following equation

∑

ij

1

β

〈

∂

∂Cab ij

∫ ∞

0
dl
(

eℓXaGeℓXb
)

ij

〉

=
〈

tr CbaG
〉

. (3.17)

3.3.1 Recursion relation for Da,〈bc〉

To begin with, we derive a loop equation involving Da,〈bc〉 assuming a 6= b and that c is

not on the shortest path connecting a and b. Let d be the node adjacent to a along that

shortest path, so that SL
ab = CadS

L−1
db and SL

ba = SL−1
bd Cda. Applying (3.17) to

G = eℓ′XaCad SL−1
db

1

y − CbcCcb
SL−1

bd , (3.18)

gives the following recursion relation

D̃a,〈bc〉(ℓ
′, y) =

∫ ∞

0
dℓ W̃a(ℓ + ℓ′)D̃d,〈bc〉(ℓ, y) . (3.19)

Its Laplace image reads

Da,〈bc〉(x, y) = Wa(x) ∗ Dd,〈bc〉(x, y), (3.20)

with the ∗ product defined in (2.25). In this derivation, it is important that Cad appears

only once. The relation (3.20) can also be obtained by an explicit integration over the

Cad matrix using the Gaussian measure. From the viewpoint of height configuration, this

can be understood as cutting the disc into two pieces along the contour line that stretches

between the two boundary operators and separates the domains of height a and d. See

figure 1. This recursion relation allows us to express all the disc correlators Da,〈bc〉 in

terms of the 2h − 2 basic correlators Da,〈a a±1〉.

3.3.2 Bilinear functional equation for Da,〈ab〉

Let us next apply (3.17) to

G = eℓ′Xa
1

y − CabCba
Cab . (3.21)

Following the similar steps as before we obtain the loop equation

y

∫ ∞

0
dℓD̃a,〈ab〉(ℓ + ℓ′, y)D̃b,〈ba〉(ℓ, y) = yD̃a,〈ab〉(ℓ

′, y) − W̃a(ℓ
′). (3.22)
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Figure 1: The disc graph contributing to Da,〈bc〉 can be decomposed into two discs along the

contour line separating the domains of height a and d and connecting the two boundary operators.

Da,〈bc〉 is therefore written as a ∗-product of Wa and Dd,〈bc〉.

Figure 2: There are two types of graphs contributing to Da,〈ab〉. The graph may have 〈ab〉
boundary of length zero so that the whole boundary has height a. If 〈ab〉 boundary has nonzero

length, one can cut it into two pieces contributing to Da,〈ab〉 and Db,〈ba〉, respectively.

After the Laplace transform with respect to ℓ, it becomes

Da,〈ab〉(x, y) =
1

y
Wa(x) + Da,〈ab〉(x, y) ∗ Db,〈ba〉(x, y). (3.23)

This relation can also be understood from the viewpoint of the height configurations. Recall

first of all that the 〈ab〉 boundary emanates contour lines separating the heights a and b.

Let us then think of a graph participating in Da,〈ab〉, and cut it along the contour line

whose endpoint is the closest to the right end of the 〈ab〉 boundary. There may be no such

contour line because the 〈ab〉 boundary may have zero length; in such a case the graph

has constant boundary height a and contributes to Wa(x). Otherwise the graph can be

decomposed into two pieces contributing respectively to Da,〈ab〉 and Db,〈ba〉. See figure 2.

These two possibilities correspond to the two terms in the r.h.s. of (3.23).

The disc correlators Da,〈ab〉 and Db,〈ba〉 satisfy two relations, namely (3.23) and another

equation obtained by exchanging a and b. To get the more useful equation we take the

discontinuity of these equations along the cut in the x-plane,

DiscDa,〈ab〉(x, y) =
1

y
DiscWa(x) + Db,〈ba〉(−x, y)DiscDa,〈ab〉(x, y),

DiscDb,〈ba〉(x, y) =
1

y
DiscWb(x) + Da,〈ab〉(−x, y)DiscDb,〈ba〉(x, y).

(3.24)
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Using these and taking into account the large-x asymptotics of Wa and Da,〈ab〉, we find

yDa,〈ab〉(x, y)Db,〈ba〉(−x, y)

−yDa,〈ab〉(x, y) − yDb,〈ba〉(−x, y) + Wa(x) + Wb(−x) = 0. (3.25)

By introducing

da,〈ab〉(x, y) =
√

y
(

Da,〈ab〉(x, y) − 1
)

(3.26)

we can rewrite the equation (3.25) into a simpler form,

da,〈ab〉(x, y)db,〈ba〉(−x, y) + Wa(x) + Wb(−x) = y. (3.27)

Here the normalization of da,〈ab〉 is somewhat arbitrary, and we chose the symmetric nor-

malization for simplicity.

3.4 Solution in the continuum limit

To study the continuum limit, we introduce a small parameter ǫ and the renormalized

couplings (µ, ξ, ζ) in the same way as we did for the O(n) model,

ǫ2µ = κ − κ∗, ǫ1/gξ = x − x∗, ǫζ = y − y∗. (3.28)

In [1, 7] the loop equations for Wa(x) has been solved under the natural ansatz,

Wa(x) = SaW (x). (3.29)

W (x) was then shown to satisfy the loop equation (2.13) for the resolvent of the O(n)

matrix model with n = 2cos(π/h). So we borrow the solution from the O(n) model under

the identification

θ = 1 − g =
1

h
. (3.30)

We define the renormalized resolvent w(ξ) in the same way as in (2.40). The solution in

the continuum limit is given by

ξ = M cosh τ, w(ξ) = −Mg

2g
cosh gτ. (3.31)

Again, M is related to µ via (2.42).

Now let us solve the loop equation (3.27) for the correlators da,〈ab〉. First we need to

determine the critical value of the 〈ab〉-boundary cosmological constant y∗. We require

that da,〈ab〉 and db,〈ba〉 vanish at the critical point (κ∗, x∗, y∗) and find

y∗ = Wa(0) + Wb(0) = (Sa + Sb)W (0). (3.32)

Next we renormalize the disc correlators near the critical point as

da,〈ab〉(x, y) = ǫαa,〈ab〉/gda,〈ab〉(ξ, ζ),

αa,〈ab〉 + αb,〈ba〉 = g = 1 − 1

h
.

(3.33)
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The loop equation in the limit of small ǫ is

da,〈ab〉(ξ, ζ)db,〈ba〉(−ξ, ζ) + Saw(ξ) + Sbw(−ξ) = ζ. (3.34)

By substituting (3.31) and

ζ =
MgS1

2g
cosh gσ (3.35)

into (3.34), the loop equation finally becomes

da,〈ab〉

(

τ − iπ/2, σ
)

db,〈ba〉

(

τ + iπ/2, σ
)

=
MgS1

g
cosh

(

g(τ + σ) + αab

2

)

cosh

(

g(τ − σ) + αab

2

)

,
(3.36)

where αab for b = a ± 1 is given by

αab = ± iπ

2

(

1 − a + b

h

)

= −αba. (3.37)

The above equation has the same structure as (2.49), so the solution is given in terms

of the Liouville boundary two-point functions. We can now use the formulae in appendix A

and B and determine the gravitational dimensions of the boundary changing operators

∆a,〈ab〉 = ∆a,a, ∆b,〈ba〉 = ∆1−b,−b when b = a + 1,

∆a,〈ab〉 = ∆1−a,−a, ∆b,〈ba〉 = ∆b,b when b = a − 1. (3.38)

This implies that the boundary operators aB〈a a+1〉 and aB〈a a−1〉 in RSOS model have

conformal weights δa,a and δa−1,a, in full agreement with the result of Saleur and Bauer.

From the comparison of the loop equation (3.20) with (A.12), it follows that the cor-

relators da,〈bc〉 are all given by Liouville boundary two-point functions. The operators
a−LB〈a a+1〉 and a+LB〈a a−1〉 are then shown to have conformal weights δa,a+L and δa−1,a+L,

respectively. By varying the integer parameters a and L, the whole spectrum of boundary

operators for this rational CFT is recovered. This result proves the conjecture of [13] on

the scaling dimensions of boundary changing operators in the RSOS model.

4. The map between the two models

It has been known for a long time that the O(n) model and SOS models are described by

the same class of conformal field theories. In particular, the RSOS model with h− 1 nodes

was known to have the same partition function on the plane as the rational O(n) model

with n = 2cos(π/h). Here we wish to explore this correspondence further, focusing mainly

on the theories on the disc.

As was used in the previous section, the O(n) model on the disc with Neumann bound-

ary condition is equivalent to the RSOS model with fixed-height boundary condition. The

disc partition functions are related via

Wa(xRSOS) = SaW (xO(n)). (4.1)

– 18 –



J
H
E
P
0
1
(
2
0
0
9
)
0
0
9

In [8] it was shown that the 〈ab〉-type boundaries of RSOS model correspond to the JS

boundaries of the O(n) model labeled by integer r. The annulus partition functions of

the O(n) model with Neumann-JS boundary conditions were shown to agree with those

of RSOS model with a-〈bc〉 boundary conditions. It was also noticed there that one needs

to introduce L non-contractible loops on the annulus of the O(n) model, corresponding to

the distance between a and 〈bc〉 labelling the two boundaries of the RSOS model.

Following their idea, we wish to relate the disc correlators of the two models on dy-

namical lattice. More explicitly, we will find out the relation between D
‖
L, D⊥

L of the O(n)

model and Da+L,〈a a−1〉, Da−L,〈a a+1〉 of the RSOS model. Our derivation of the relation is

based on the loop equations and the diagrammatics of the matrix models, and does not

rely on the continuum limit.

The first step is to relate the boundary cosmological constants. From the relation (4.1)

we simply relate the x’s by

xRSOS = xO(n) (4.2)

for Neumann boundary of the O(n) model and the fixed height boundary in RSOS model.

Similarly, it follows from (2.43) and (3.32) that the y’s for the r-th JS boundary and the

〈ab〉 boundary should be related via

yO(n) =
yRSOS

Sa

(

〈a, b〉 = 〈r, r + 1〉 or 〈h − r, h − r − 1〉
)

,

yO(n) =
yRSOS

Sb

(

〈a, b〉 = 〈r + 1, r〉 or 〈h − r − 1, h − r〉
)

.
(4.3)

4.1 Relations between Feynman graphs

Instead of finding the correspondence of disc correlators quickly from loop equations, let us

explain how the correlators of the two matrix models should be related from the viewpoint

of Feynman graph expansion.

The underlying idea is very simple. Each Feynman graph of the RSOS matrix model

describes a dynamical lattice with a height assigned to every face, so that one can draw

contour lines separating the domains of adjacent heights. If we focus only on the contour

lines and forget about the heights, then what we get is nothing but the Feynman graph of

the O(n) matrix model. We thus compare each Feynman graph of the O(n) matrix model

with the sum over all the Feynman graphs of the RSOS model having the same contour

line configuration but different height assignments.

4.1.1 Resolvents

To begin with, let us consider the relation between the resolvents of the RSOS and the

O(n) matrix models,

Wa(x) = SaW (x). (4.4)

Each graph contributing to Wa(x) has the unique outermost domain of height a, and is

inscribed by several subdomains of height a ± 1. Each subdomain may be inscribed by

several subdomains of adjacent heights, and by iterating this a finite number of times one

can cover the entire disc. Now let us sum over all the height assignments in the interior.
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Figure 3: The graphs contributing to Da,〈ab〉 have open contour lines separating the domains of

height a and b. By shrinking the b part of the 〈ab〉-boundary, those contour lines turn to form loops

touching the boundary.

Using the rule explained after (3.7), we first assign Sa to the outermost domain of height

a. To each of its subdomains one can assign the height a + 1 or a − 1, which gives rise to

a factor
Sa+1

Sa
+

Sa−1

Sa
= 2cos

π

h
= n. (4.5)

By repeating this and going step by step to the interior, one ends up with the Feynman

graph of the O(n) matrix model with a factor n assigned to each loop. This explains the

relation (4.4) at the level of the Feynman graph sum.

4.1.2 Disc correlators D⊥
0 and Da,〈ab〉

Next, we use a similar argument to show the relation

Da,〈ab〉(x, y) = D⊥
0

(

x, y/Sa

)

, (4.6)

where we assume b = a + 1 for simplicity, and the JS boundary is expected to be labelled

by r = a from (4.3). To show this, we consider Feynman graphs contributing to the l.h.s.

with the power 1/ym+1. Such graphs have the 〈ab〉-boundary of length m, and there are

therefore m open contour lines ending on the 〈ab〉-boundary. If we cut the graph along

these contours, it would decompose into ma pieces of boundary height a and mb pieces of

boundary height b, where ma + mb = m + 1 and ma > 0. This means that the graphs have

m + 1 outermost domains of heights a or b.

We now take the sum of such graphs over different height assignments in the interior

but for a fixed contour line configuration, to obtain a graph of the O(n) matrix model.

Each contour line in the interior is assigned a factor n in the same way as before. Collecting

the factors associated to the outermost domains we find,

y−m−1Sma
a Smb

b =
(

Sa/y
)m+1 ×

(

Sb/Sa

)mb . (4.7)

We then deform the contour line configuration to a loop configuration by shrinking

the b-part of the 〈ab〉-boundary as shown in figure 3. The m open contour lines then

turn into mb closed loops touching the boundary m times in total. The expression for the

weight (4.7) then implies that the 〈ab〉-boundary of the RSOS matrix model is mapped to

the k-th JS boundary of the O(n) model, with boundary cosmological constant y/Sa and

k(a) =
Sa+1

Sa
=

sinπ(a + 1)/h

sin πa/h
. (4.8)

Thus we have shown (4.6). It also implies a = r in agreement with (4.3).
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Figure 4: The graphs contributing to Db,〈ba〉 have open contour lines separating the domains of

height a and b. By shrinking the b part of the 〈ba〉-boundary, those contour lines turn into some

loops touching the boundary and a line connecting the two boundary-changing operators.

4.1.3 Disc correlators D
‖
1 and Db,〈ba〉

Using the same argument, let us next show the equation

Db,〈ba〉(x, y) =
Sb

y

(

W (x) +
1

k
D

‖
1

(

x, y/Sa

)

)

. (4.9)

We again focus on the graphs contributing to the l.h.s. with power 1/ym+1, which have m

open contour lines ending on the 〈ba〉-boundary. Such graphs have ma outermost domains

of height a and mb outermost domains of height b, with the condition

ma + mb = m + 1, mb > 0. (4.10)

We perform the sum over the height assignments in the interior and map the graphs to

those of the O(n) matrix model.

By shrinking the b-part of the 〈ba〉-boundary, we get the graph in the O(n) matrix

model which generically has one open line connecting the two boundary changing operators

in addition to mb−1 loops. They altogether touch the JS boundary m−1 times in total. It

is important to notice that the open line can end on the JS boundary. We should therefore

identify the boundary operators as the one-leg blobbed operators Y
‖
1. The situation is

illustrated in figure 4. The graph of the O(n) model we thus obtained has the following

weight from the outermost domains,

y−m−1Sma
a Smb

b =
(

Sb/y
)

×
(

Sa/y
)m ×

(

Sb/Sa

)mb−1
. (4.11)

The same graph and weight can be obtained from the Feynman graph expansion of the

second term in the r.h.s. of (4.9). Note that the additional factor 1/k is inserted because

the line connecting the two Y
‖
1 can be made from propagators of Y1, · · · or Yk, leading to

a factor k. The first term of the r.h.s. , on the other hand, is the sum over the exceptional

graphs of the RSOS model corresponding to m = 0, namely, those graphs which have the

〈ba〉 boundary of length zero. The sum over such graphs is simply the leading term in the

1/y-expansion of the l.h.s. and therefore given by Wb(x)/y. This finishes the diagrammatic

proof of (4.9).

The relations (4.6) and (4.9) can be used to show that the loop equations of the O(n)

matrix model (2.33) and the RSOS model (3.25) are mapped to each other. These relations

also explain that the operators aB〈a a+1〉 and a+1B〈a+1 a〉 have the same conformal weight

as that of S
⊥
0 and S

‖
1 between the Neumann and the k(a)-th JS boundaries.
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4.1.4 Disc correlators of L-leg operators

It is obvious how to extend the correspondence to the disc correlators of L-leg operators

using the argument of summing over height configurations and shrinking the b-part of the

〈ab〉 boundary. We skip the details and present the final results.

Da−L,〈a a+1〉(x, y) = Sa−1 · · ·Sa−L
(n − k − L)!

(n − k)!
D⊥

L (x, y/Sa),

Da+L,〈a+1 a〉(x, y) =
Sa+1 · · ·Sa+L

y

(

WL(x) +
(k − L)!

k!
D

‖
L(x, y/Sa)

)

,

(4.12)

where WL(x) is determined by the recursion relation

DiscWL+1(x) = WL(−x)DiscW (x), W1(x) = W (x). (4.13)

These include the results of the previous subsubsection as special cases. It is also easy to

show that they relate the recursion relation of the O(n) model (2.36) to that of the RSOS

model (3.20). They also explain that the operator a−LB〈a a+1〉 has the same conformal

weight as S
⊥
L between the Neumann and the k(a)-th JS boundaries, and similarly for

a+LB〈a+1 a〉 and S
‖
L.

The first term in the second line of (4.12) is equal to the leading term in the 1/y-

expansion of the l.h.s. , and the corresponding graphs have 〈a + 1 a〉 boundary of zero

length. Therefore, WL(x) is a disc one-point function of a boundary operator with L

nested loops attached, corresponding to the fusion product of two L-leg operators. Such

an operator should be described in terms of star operators [11]; the star operator SL is a

source of L open lines and is allowed to exist between two Neumann boundaries. In [11]

its gravitational dimension was found to be ∆1,L+1, and the disc two-point functions were

computed in the continuum limit. Our WL can be calculated in the same way. Using the

standard parameterization ξ = M cosh τ in the continuum limit we find,

WL(τ) =
L
∏

k=1

sinπg

sin πg(k + 1)

L
∏

k=0

W
(

τ + iπ(L − 2k)
)

. (4.14)

5. Concluding remarks

In this paper we studied the new boundary condition of the O(n) model proposed by

Jacobsen and Saleur. By using the matrix model formulation, we were able to relate them

to the boundary conditions of RSOS model with alternating heights. The loop equations

turned out to be a very efficient tool in calculating the spectrum and the conformal weights

of boundary changing operators.

Our techniques based on matrix model and loop equations are applicable to the analysis

of more involved situations, such as discs with several JS boundaries labelled by different

k. An interesting problem is to study the spectrum of boundary operators between two JS

boundaries. (On a regular lattice this has been done in the recent work [25].)

Another natural and interesting question will be to ask how our results can be extended

to the dilute phase. Since the lattice will no longer be packed densely by the loops, one
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would expect a conformal boundary condition for which some sites on the boundary have

no open line attached. We will therefore need to generalize the JS boundary so that it can

have vacancies. It will be an interesting problem to study the renormalization group flow

for the fugacity associated to the vacancy. We hope to address this issue in the future.
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A. Gravitational dressing, Liouville theory and KPZ

Here we summarize some basic facts on conformal field theories coupled to gravity and

boundary Liouville field theory. More details can be found in [11, 12] and the original

paper [19, 26, 27].

Let us consider the ‘matter CFT’ of the central charge

c = 1 − 6θ2

1 − θ
< 1. (A.1)

When θ = 1/h for a positive integer h ≥ 3, the theory is rational and corresponds to

the minimal model of the unitary series (h − 1, h). Turning on the gravity corresponds to

summing over different metrics and topology of the two-dimensional space. After gauge

fixing it amounts to coupling the CFT to the Liouville field φ and bc ghost system.

Let us take the matter CFT to be the Coulomb gas model [14, 15] described by a scalar

χ. The vanishing of the total central charge puts a certain condition on the matter and

the Liouville background charges e0 and Q. We can parameterize them as

Q =
1

b
+ b , e0 =

1

b
− b . (A.2)

Here b =
√

1 − θ is the Liouville coupling constant.

In this model we consider the matter field eier,sχ of conformal weight δr,s. With a

suitable gravitational dressing it becomes an operator of conformal weight one,

Br,s =
Γ(2bPr,s)

π
exp (ier,sχ + βr,sφ) . (A.3)

Here various parameters are related as follows,

er,s =
e0

2
− Pr,s, βr,s =

Q

2
− |Pr,s|, Pr,s =

r

2b
− sb

2
, (A.4)

and (r, s) is a pair of positive integers labelling degenerate representations of the matter

CFT. The matter conformal weight δr,s is given by

δr,s =
(r/b − sb)2 − (1/b − b)2

4
. (A.5)
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Introducing gravitational dimension ∆ ≡ (2P − e0)/2b and string susceptibility γstr ≡
−θ/(1 − θ), one can write the KPZ scaling formula [28 – 30],

δ =
∆(∆ − γstr)

1 − γstr
. (A.6)

Note that there is another way of gravitational dressing, β̃ = Q/2 + |P |, as was considered

in [9]. As an example, the boundary identity operator can be dressed by eφ/b instead of ebφ.

This suggests that there are two boundary cosmological couplings, and one has a fractional

dimension with respect to the other.

After turning on the gravity, correlators no longer depend on the positions of the

operators inserted because one has to integrate over the positions of those operators. The

dimensions of the operators therefore cannot be read from the position-dependence of their

correlators. Instead, they should be read off from the dependence of correlators on the

cosmological constant µ. If we restrict to discs, then the amplitudes with n boundary

operators BPi
and m bulk operators VKj

scale with µ as

〈

ξ1BP1

ξ2 · · · ξnBPn

ξ1 VK1
· · ·VKm

〉

∝ µγ , (A.7)

with

γ =

(

1 − m − n

2

)(

1 − γstr

2

)

+
1

2b

( n
∑

i=1

|Pi| +
m
∑

j=1

|Kj |
)

. (A.8)

Of course, the gravitational dimensions of the operators can be read more explicitly from

the more detailed form of the amplitudes.

As an example, let us consider a disc with two boundary segments, labelled by bound-

ary cosmological constants ζ1 and ζ2 and connected by the operators ζ1Bζ2 . In boundary

Liouville theory, boundary cosmological constant ζ is the coefficient of the boundary inter-

action ebφ. Following [19] we use a parametrization of ζ similar to (2.48),

ζ =

√

µ

sinπb2
cosh b

2τ . (A.9)

The computation of the disc amplitude involves the disc two-point functions of the Liouville

and matter CFTs. The Liouville and matter part of the correlator factorize, and the matter

part gives only a ζ-independent factor. The Liouville part is given by [19]

〈

ζ1BP
ζ2(x) ζ2BP

ζ1(0)
〉

Liouville
= A(P )d(|P |, τ1, τ2)|x|−2β(Q−β) , (A.10)

with

ln d(P, τ1, τ2) = −
∫ ∞

−∞

dω

ω

(

cos ωτ1 cos ωτ2 sinh 2πPω/b

sinhπω sinhπω/b2
− 2Pb

πω

)

. (A.11)

Here A(P ) is a known function of P and is related to the “leg factor” arising from different

normalization of the wave functions. It is independent of τ ’s and therefore unimportant.

On the other hand, the τ -dependent part (A.11) is expressed in terms of the double-sine
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function of pseudo-periods b and 1/b [31]. It satisfies an important shift relation involving

both P and τi,

d(P, τ1 + iπ, τ2) − d(P, τ1 − iπ, τ2) ∝ sinh b
2τ1 d(P − b/2, τ1, τ2), (A.12)

up to a τ -independent factor. Shifting P by −b/2 corresponds to changing the label of the

operator from (r, s) to (r, s + 1).

B. Solving the loop equation

Here we solve the loop equation (2.49)

d1

(

τ ∓ iπ

2
, σ

)

d0

(

τ ± iπ

2
, σ

)

= CMg cosh
g(τ + σ) ± α

2
cosh

g(τ − σ) ± α

2
.

We define the function ua(τ, σ) by

da(τ, σ) =

√
C

2
Mαa exp ua(τ, σ) (B.1)

with αa + αb = g, and denote by ûa(ω, σ) their Fourier transform with respect to τ .

Let us take the log and the Fourier transform of the loop equation. Using
∫ ∞

−∞
dτeiωτ log

(

2 cosh
gτ + α

2

)

= − πe−iαω/g

ω sinh(πω/g)
, (B.2)

the loop equation for ûa(ω, σ) becomes algebraic,

e±
πω
2 û1(ω, σ) + e∓

πω
2 û0(ω, σ) = −2π

ω

cos ωσ

sinh(πω/g)
e±iωα/g. (B.3)

Solving this in favor of ûa and Fourier transforming back, we find

ua(τ, σ) = −
∫ ∞

−∞

dω

ω

cos σω cos τω

sinhπω sinh πω/g
sinh

(

πω

2
± iαω

g

)

, (B.4)

where plus sign is for u1 and minus sign for u0. One recognizes the same functional form

as the Liouville boundary two-point function (A.11).

By comparing (B.4) with (A.11) one finds the value of P for the boundary-changing

operators. Then by using the scaling law (A.8) one can determine the exponents α0 and

α1

2bP0 = α0 = rθ, 2bP1 = α1 = 1 − θ − rθ. (B.5)

Another way to find αa is to analyze the two-point function at ζ = µ = 0,

d(ξ, ζ = 0, µ = 0) ∼ ξαa ∼ eαa|τ |. (B.6)

Setting σ = iπ/2g and τ → ∞ in (B.4), the dominant contribution to the integral is from

the vicinity of the second order pole at ω = 0. Using
∫ ∞

−∞

dωeiωτ

ω2
= −π|τ |, (B.7)

one finds ua ≃ 2bP |τ | and recovers (B.5) again.
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